Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/52
Paper 5 Planning, Analysis and Evaluation
October/November 2016

MARK SCHEME

Maximum Mark: 30

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	52

Question	Answer	Marks
1	Defining the problem	
	p is the independent variable and B is the dependent variable, or vary p and measure B.	1
	Keep the current/I (in the electromagnet) constant.	1
	Methods of data collection	
	Labelled diagram showing Hall probe correctly positioned (along p) and ruler correctly positioned and either Hall probe or rule supported.	1
	Correct circuit diagram to include d.c. power supply in series with coil and ammeter. Must be a workable circuit diagram to measure current through the coil.	1
	Measure p with ruler.	1
	Method to determine an accurate value of p. Examples include: Height of P above bench - height of electromagnet Height of P measured from ruler across the top of the electromagnet	1
	Method of analysis	
	Plot a graph of $\ln B$ against p.	1
	$\alpha=-$ gradient	1
	$k=\frac{\mathrm{e}^{y \text {-intercept }}}{N I}$	1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	52

Question	Answer	Marks
	Additional detail including safety considerations	$\mathbf{6}$
	1. Keep the number of turns/N constant. 2. Use large number of turns/current (to increase B). 3. Avoid overheating the coil/do not touch hot coil. 4. Use of variable resistor to keep ammeter reading constant. 5.Method to ensure that Hall probe is equidistant from the poles, e.g. determine centre of electromagnet and use of plumb line/ruler and spirit level/set square. 6. Adjust Hall probe until maximum reading obtained/perpendicular to field. 7. $\frac{\text { Repeat each experiment for the same value of } p \text { and reverse the }}{\text { current/Hall probe and average }}$ 8. In $B=-\alpha p+$ In $k N I$ 9. Relationship is valid if the graph is a straight line. 10. Calibrate Hall probe using a known field.	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	52

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9702	52

Question	Answer	Marks
(iv)	y-intercept determined by substitution into $y=m x+c$. Read-offs must be accurate to half a small square.	$\mathbf{1}$
	Method of determining absolute uncertainty. uncertainty $=y$-intercept of line of best fit $-y$-intercept of worst acceptable line or uncertainty $=1 / 2($ steepest worst line y-intercept - shallowest worst line y-intercept) No ECF from false origin method.	$\mathbf{1}$
(d)	Use of $p=10^{\text {answer to 2(c)(iv) }}$ or $\lg p=a n s w e r ~ t o ~ 2(c)(i v) ~$	$\mathbf{1}$
	$q=$ gradient and in the range -2.50 to -2.70 and given to 2 or 3 s.f.	
(e)	Use of $V=p \times 950^{q}$ or lg $V=q \lg 950+\lg p$ or $\lg V=q \lg 950+y$-intercept Correct substitution of numbers must be seen to give V.	$\mathbf{1}$

